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Chapter f – Linear Algebra

1. Scope of the Chapter

This chapter is concerned with:

(i) Matrix factorizations and transformations
(ii) Solving matrix eigenvalue problems
(iii) Finding determinants
(iv) Solving systems of linear equations

Functions in this chapter can also be used in the solution of linear least-squares problems and for
matrix inversion.

2. Background

2.1. Matrix Factorizations

Functions are provided to compute the

– LU factorization
– Cholesky factorization
– QR factorization
– Singular value decomposition (SVD)

of various types of matrix.

2.1.1. LU and Cholesky Factorizations

The LU factorization of an n by n general square matrix A is given by

A = PLU,

where L and U are n by n lower and upper triangular matrices respectively and P is an n by n
permutation matrix. P is chosen to ensure the numerical stability of the factorization process.

nag real lu (f03afc) and nag complex lu (f03ahc) compute the LU factorization of real and complex
non-singular matrices respectively.

When A is a real symmetric positive-definite matrix we can choose P = I and L = UT giving

A = LLT (or equivalently A = UTU),

which is the Cholesky factorization of A. In the case of a complex Hermitian positive-definite
matrix, the Cholesky factorization is

A = LLH (or equivalently A = UHU),

where LH denotes the conjugate transpose of L.

nag real cholesky (f03aec) and nag complex cholesky (f01bnc) compute the Cholesky factorization
of real symmetric and complex Hermitian positive-definite matrices respectively.

A variant of the Cholesky factorization, given by

A = LDLT

where L is unit lower triangular and D is diagonal, is computed by nag real cholesky skyline
(f01mcc) in the case where A is a real variable band (skyline) matrix.

One of the main uses of LU and Cholesky factorizations is in the solution of systems of linear
equations (see Section 2.4 below).
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2.1.2. QR factorizations

The QR factorization of an m by n (m ≥ n) general matrix A is given by

A = Q

(
R
0

)
,

where Q is an m by n orthogonal matrix (or unitary matrix in the complex case) and R is an n by
n upper triangular matrix.

nag real qr (f01qcc) and nag complex qr (f01rcc) compute the QR factorization of real and complex
matrices respectively.

Note: in the real case

ATA = RTR

and in the complex case

AHA = RHR,

so that R is the Cholesky factor of the matrix ATA (or AHA) which occurs in the normal equations.

The QR factorization can be used in the solution of linear least-squares problems (see Section 2.5
below).

2.1.3. The singular value decomposition

The singular value decomposition (SVD) of a real m by n matrix A is given by

A = QDPT ,

where

D =
(
S
0

)
, m > n; D = S, m = n; D = (S 0), m < n,

Q is an m by m orthogonal matrix, P is an n by n orthogonal matrix and S is a diagonal matrix
of order min(m,n) with non-negative diagonal elements. S can be chosen so that

s1 ≥ s2 ≥ . . . ≥ smin(m,n) ≥ 0,

where si is the ith diagonal element of S. In the complex case the SVD is given by

A = QDPH

where Q and P are both unitary, but D is still real.

The first min(m,n) columns of Q and P are the left- and right-hand singular vectors of A
respectively and the diagonal elements of S are the singular values of A.

nag real svd (f02wec) and nag complex svd (f02xec) compute the singular value decomposition of
real and complex matrices respectively.

Note: in the real case

ATA = P (DTD)PT

and in the complex case

AHA = P (DHD)PH ,

so that s2
i is an eigenvalue of the normal matrix ATA (or AHA) and the ith column of P is the

corresponding eigenvector. Note also that

‖A‖2 = s1.
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The singular value decomposition provides perhaps the most reliable means of estimating the rank
of a matrix. If rank(A) = k < min(m,n) then in exact arithmetic

s1 ≥ s2 ≥ . . . ≥ sk > 0, sk+1 = . . . = smin(m,n) = 0.

Numerically, if rank(A) = k, or if rank(A) is close to k, then sk+1, . . . , smin(m,n) will be small
relative to s1. See Section 5.5.8 of Golub and Van Loan (1989) for further information.

The singular value decomposition can be used in the solution of linear least-squares problems, and
is particularly appropriate when the matrix of coefficients (observations) is thought to be nearly
rank deficient (see Section 2.5 below).

2.2. Eigenvalue Problems

Functions are provided in this chapter for solving the standard eigenvalue problem

Ax = λx,

where A is an n by n matrix, λ is an eigenvalue and

x �= 0

is an eigenvector, and the generalized eigenvalue problem

Ax = λBx,

where B is also an n by n matrix.

2.2.1. Standard symmetric or Hermitian eigenvalue problems

nag real symm eigenvalues (f02aac) and nag real symm eigensystem (f02abc) may be used to
compute either all the eigenvalues, or all the eigenvalues and eigenvectors, respectively of a real
symmetric matrix. The functions first reduce A to a symmetric tridiagonal matrix by Householder
transformations and then apply the QL algorithm (a variant of the QR algorithm) to the tridiagonal
matrix. The eigenvectors produced by nag real symm eigensystem (f02abc) will be orthogonal
to working accuracy. nag hermitian eigenvalues (f02awc) and nag hermitian eigensystem (f02axc)
perform similar computations on complex Hermitian matrices.

2.2.2. Standard unsymmetric eigenvalue problems

Four functions are provided. nag real eigensystem sel (f02ecc) and nag complex eigensystem sel
(f02gcc) can be used to compute some or all the eigenvalues and eigenvectors of either
a real or a complex general unsymmetric matrix respectively. nag real eigenvalues (f02afc)
and nag real eigensystem (f02agc) may be used to compute either all the eigenvalues, or all
the eigenvalues and eigenvectors, respectively of a real general unsymmetric matrix. The
eigenvalues and eigenvectors of an unsymmetric matrix A is computed by first reducing it
to an upper Hessenberg matrix by Householder transformations and then applying the QR
algorithm (with double shifts) to the Hessenberg matrix. Even though, in exact arithmetic, A
may not have a full set of n linearly independent eigenvectors, nag real eigensystem sel (f02ecc)
nag complex eigensystem sel (f02gcc) and nag real eigensystem (f02agc) will produce such a set,
but they may be nearly linearly dependent.

2.2.3. Generalized symmetric-definite eigenvalue problems

nag real symm general eigenvalues (f02adc) and nag real symm general eigensystem (f02aec) may
be used to solve the real generalized symmetric eigenvalue problem Ax = λBx, where A is symmetric
and B is symmetric positive-definite; nag real symm general eigenvalues (f02adc) produces all
the eigenvalues and nag real symm general eigensystem (f02aec) produces all the eigenvalues and
eigenvectors. The functions first calculate the Cholesky factorization of B given by

B = LLT ,

where L is lower triangular, and then transform the generalized problem to the standard problem

Cy = λy, where C = L−1AL−T and y = LTx.
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Since this method implicitly involves the inversion of B, it is strongly recommended that B be
well-conditioned with respect to inversion; i.e., B should not have small eigenvalues.

The generalized symmetric eigenvalue problem

ABx = λx

may be similarly solved via a Cholesky factorization, by solving the standard eigenvalue problem

Cy = λy, C = LTAL, x = L−T y.

2.2.4. Generalized unsymmetric eigenvalue problems

nag real general eigensystem (f02bjc) may be used to solve a real unsymmetric eigenproblem
Ax = λBx, where both A and B are unsymmetric square matrices. As in unsymmetric standard
eigenproblems, the eigenvalues and eigenvectors may be complex, in which case they occur in
complex conjugate pairs. The function first simultaneously reduces A to an upper Hessenberg
matrix and B to an upper triangular matrix, by orthogonal transformations, and then applies
the QZ algorithm (with single or double shifts) to compute the eigenvalues. The eigenvectors (if
wanted) are found by back-substitution and back-transformation.

2.3. Determinants

The determinant of an n by n matrix A is readily computed from its LU factorization (see Section
2.1.1) as

det(A) = sign(P )(l11l22 . . . lnn)(u11u22 . . . unn),

where sign(P ) is the associated sign of the permutation matrix P . In the particular case of the
Cholesky factorization this becomes

det(A) = l211l
2
22 . . . l

2
nn.

To avoid overflow and underflow in the computation of the determinant the functions in this chapter
find det(A) in the form

det(A) = d1.2
d2 ,

where d2 is an integer and

1
16 ≤ |d1| < 1.

nag real lu (f03afc) and nag complex lu (f03ahc) compute the determinant of real and complex
general matrices respectively, and nag real cholesky (f03aec) computes the determinant of a real
symmetric positive-definite matrix.

2.4. Simultaneous Linear Equations

Functions are provided to solve systems of linear equations of the form

Ax = b,

where A is an n by n non-singular matrix, b is an n element (single right-hand side) vector and x is
the n element solution vector, as well as functions to solve systems with multiple right-hand sides

AX = B,

where B is an n by r matrix and X is the n by r solution matrix. In some cases the equations can
be solved by calling a single function, and in other cases it is necessary first to call a function to
factorize the matrix A (see Section 2.1.1) before calling the function to solve the linear equations.

nag real lin eqn (f04arc) solves a system of equations with a real general matrix A and a single right-
hand side, while the combination nag real lu (f03afc) and nag real lu solve mult rhs (f04ajc) can be
used for multiple right-hand sides. In the case of a complex general matrix with multiple right-hand
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sides either nag complex lin eqn mult rhs (f04adc), or the combination of nag complex lu (f03ahc)
and nag complex lu solve mult rhs (f04akc), may be used.

The combination nag real cholesky (f03aec) and nag real cholesky solve mult rhs (f04agc) may be
used with a real symmetric positive-definite matrix A and multiple right-hand sides, and the
combination nag complex cholesky (f01bnc) and nag hermitian lin eqn mult rhs (f04awc) when A
is complex Hermitian positive-definite.

Naturally the functions for multiple right-hand sides may be used with single right-hand sides by
setting r = 1.

Note that to solve, for example, the equations

Ax = b and Ay = c,

it is only necessary to factorize A once and then use two calls to the function to solve the equations,
one for each of x and y.

2.5. Linear Least-squares Problems

The QR factorization discussed in Section 2.1.2 and the singular value decomposition discussed in
Section 2.1.3 may readily be used to solve linear least-squares problems

minimize rT r, where r = b−Ax,

where A is a real m by n matrix, b is an m element vector and x is the n element solution vector.
r, the vector whose Euclidean length is to be minimized, is the m element residual vector. In the
complex case we replace rT r by rHr.

The QR factorization can be used when A is of full rank with m ≥ n and the singular value
decomposition can be used without restrictions on A.

2.5.1. Least-squares and the QR factorization

If A is a real matrix of full rank with m ≥ n then the QR factorization yields a non-singular upper
triangular matrix R and we find that

rT r = eT e, where e = QT b−
(
R
0

)
x.

If we put

QT b =
(
c1
c2

)
, c1 an n element vector,

then we see that rT r is minimized when

Rx = c1,

in which case rT r = cT
2 c2. Thus x is the solution of the upper triangular system Rx = c1.

nag real apply q (f01qdc) can be used, following a call to nag real qr (f01qcc), to obtain QT b, and
similarly for the complex case nag complex apply q (f01rdc) can be used to obtain QHb following
a call to nag complex qr (f01rcc).

2.5.2. Least-squares and the SVD

If A is a real matrix with rank(A) = k then the singular value decomposition yields a diagonal
matrix D of the form

D =
(

Σ 0
0 0

)
,

where Σ is a k by k non-singular diagonal matrix, with positive diagonal entries s1, s2, . . . , sk. If
we put

QT b =
(
c1
c2

)
and PTx = y ≡

(
y1

y2

)
,
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where c1 and y1 are k element vectors, we find that

rT r = eT e, where e =
(
c1 − Σy1

c2

)
,

so that rT r is minimized when

Σy1 = c1,

in which case rT r = cT
2 c2. If k = n then y2 is not present (y = y1) and x = Py is the unique

least-squares solution. But, if k < n then the (n − k) elements of y2 are arbitrary. The so-called
minimal length least-squares solution, for which xTx is a minimum, is obtained by choosing

y2 = 0,

and once again x is obtained as

x = Py.

The SVD function nag real svd (f02wec) has options to allow the formation of QT b and of PT . In
the complex case nag complex svd (f02xec) allows the formation of QHb and of PH .

The determination of the rank of A from its singular values is not always straightforward, since we
have to decide which singular values are negligible. If tol is an estimate of the relative errors in the
elements of A then it is often reasonable to choose rank(A) = k so that

sk = min
i

si for which si > tol.s1.

Certainly any singular values for which si ≤ ε.s1, where ε is the machine precision, should be
regarded as negligible.

2.6. Matrix Inversion

The inverse of n by n non-singular matrix A may be found using one of the functions for solving
systems of linear equations (see Section 2.4), by choosing B = I and solving

AX = I,

to give A−1 = X .

3. Available Functions

3.1. Factorizations

LU factorization and determinant
complex matrix f03ahc
real matrix f03afc

Cholesky factorization and determinant
real symmetric, positive-definite matrix f03aec

Cholesky factorization
complex Hermitian positive-definite matrix f01bnc
real symmetric positive-definite variable band matrix f01mcc

QR factorization, m by n matrix
complex matrix (m ≥ n) f01rcc
real matrix (m ≥ n) f01qcc

Operations with orthogonal matrices
compute QB or QTB, after QR factorization by f01qcc f01qdc
form columns of Q, after QR factorization by f01qcc f01qec

Operations with unitary matrices
compute QB or QHB, after QR factorization by f01rcc f01rdc
form columns of Q, after QR factorization by f01rcc f01rec
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Singular value decomposition, m by n matrix
complex matrix f02xec
real matrix f02wec

3.2. Eigenvalue problems

Real unsymmetric matrix
all eigenvalues f02afc
all eigenvalues and eigenvectors f02agc
selected eigenvalues and eigenvectors f02ecc

Complex unsymmetric matrix
selected eigenvalues and eigenvectors f02gcc

Real symmetric matrix
all eigenvalues f02aac
all eigenvalues and eigenvectors f02abc

Complex Hermitian matrix
all eigenvalues f02awc
all eigenvalues and eigenvectors f02axc

Generalized real eigenproblem Ax = λBx
all eigenvalues and (optionally) eigenvectors f02bjc

Generalized real symmetric definite eigenproblem Ax = λBx
all eigenvalues f02adc
all eigenvalues and eigenvectors f02aec

3.3. Linear Equations

Solution of equations
complex matrix, multiple right-hand sides f04adc
real matrix, single right-hand side f04arc

Solution of equations after factorizing the matrix
complex matrix, multiple right-hand sides (factorization by f03ahc) f04akc
complex Hermitian positive-definite matrix, multiple right-hand sides
(factorization by f01bnc) f04awc
real matrix, multiple right-hand sides (factorization by f03afc) f04ajc
real symmetric positive-definite matrix, multiple right-hand sides
(factorization by f03aec) f04agc
real symmetric positive-definite variable band matrix, multiple right-hand sides
(factorization by f01mcc) f04mcc

4. Specification of Level 2 and Level 3 BLAS in C

The Level 2 and Level 3 BLAS have been made available in the NAG C Library. Please refer to
Chapter f06 for further details.
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